How networks are shaping Tshwane
Tools for urban network analysis – Part III

Serge SALAT
Data analysis by Loeiz BOURDIC
Urban analysis by Darren NEL and Albert FERREIRA

Urban Morphology Institute – University of Pretoria
The evolution urban form in Tshwane

Evolution of modernistic planning In Tshwane
The evolution of the suburban tree

Evolution of modernistic planning In Tshwane

How to quantify the divergence of urban forms in Tshwane?
Presentation of tools

• **Simple metrics**
 – *Nb of intersections per km²*
 – *Cyclomatic number*
 – *Gamma index*

• **Network analysis (based on Marshall)**
 – *Nodegram*
 – *Routegram, Netgram, Hetgram*

• **Space syntax**

• **Dual approach from Porta et al.**
Space syntax

- A tool designed by Hillier et al. to help architects simulate the likely social effects of their designs.

- A route in space syntax is one axial line

Space Syntax
Routes are axial lines
Space syntax – depth maps

• **The depth maps** enable you to specify a line number and then the program plots the increasing distance of other lines from that line. It plots these using the space syntax integration colors. For example, if we take line 1 which has depth 1 to itself, then all lines of depth 2 take on the next values, and so on until all the lines in the map are plotted at increasing depth from the original line.

• **Depth maps** can be implemented for lines and for junctions and help understanding the depth of a network
Space Syntax - Newlands

3 entrance points
1 main road to access
Space Syntax - Newlands

The top access route is of depth one, in red

Depth increases when moving inside the network, from yellow, to green, to blue
Space Syntax - Newlands

From North entrance
From middle entrance
From South entrance

From all entrances, the very left hand side of the network is very deep and isolated from the outside
Space Syntax – Silver Lakes
Space Syntax – Silver Lakes

Two entrance points in Silver Lakes
Space Syntax – Silver Lakes
Depth map, from North entrance
Space Syntax – Silver Lakes
Depth map, from South entrance

There is no real axial line that structures the network within the district.
Space Syntax – Silver Lakes
Depth map, from North entrance
Space Syntax – Silver Lakes
Depth map, from South entrance
Dual approach

Space syntax versus Porta

Porta et al. propose another dual approach, where routes have a real urban meaning (based on Intersection Continuity Negotiation algorithm)

Space Syntax
Routes are axial lines

Porta – dual approach
Routes are chosen according to the "urban understanding" of the network
Dual approach – Brooklyn

Routes are chosen according to ICN algorithm (or by hand for small samples)
Dual approach - Brooklyn

Then routes are numbered
Dual approach - Brooklyn

Route 1 is connected to routes 2, 3, 4, 5, 6, 7, 8, 10, 15, 16, 18, 19, 20
Route 2 is connected to routes 4, 17...
Dual approach – Brooklyn

This method generates a dual graph for Brooklyn
Dual approach – Irene
Dual approach – Irene
Dual approach – Silver Lakes
Dual approach – Silver Lakes
Dual approach – Newlands
Dual approach – Newlands
Dual approach - Tshwane

These graphs show visually the impoverishment of networks in Tshwane.
Metrics of the dual graph

1. Geodesic distance and diameter
2. Clustering coefficient
3. Betweenness centrality

(Newland is a too poor network to do any math...)}
Metrics of the dual graph
Geodesic distance and diameter

• Take two nodes \((i,j)\), and measure the shortest path between them. Call the length of this path \(L_{ij}\). \(L_{ij}\) is called the geodesic distance between node \(i\) and node \(j\).

• Two parameters of interest:
 – The diameter of the graph is the highest value of \(L_{ij}\)
 – The average geodesic distance, is the average of \(L_{ij}\)

\[\text{Diameter of the graph } d\]
Average geodesic distance in Tshwane

<table>
<thead>
<tr>
<th>Location</th>
<th>Geodesic Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooklyn</td>
<td>2.2</td>
</tr>
<tr>
<td>Irene</td>
<td>2.4</td>
</tr>
<tr>
<td>Silver Lakes</td>
<td>2.7</td>
</tr>
</tbody>
</table>

The shortest topological path increases by 22% from Brooklyn to Silver Lakes.

This reveals the switch from a spatial segregation to a topological segregation, with topological distances increasing in the networks.

Note: diameters (maximal geodesic distances) are identical for the three networks
The clustering coefficient of a vertex indicates how concentrated the neighborhood of that vertex is.

The clustering coefficient is the ratio of the number of actual edges there are between neighbors to the number of potential edges there are between neighbors (all possible edges between the vertices including blue edges).

Example

Here the actual number of edges is 5 and the potential number of edges is 6 (add the blue line)

The clustering coefficient of node v is 5/6
Metrics of the dual graph

Clustering coefficient

• Clustering coefficients for all nodes in the network can be averaged.

• High average clustering coefficients indicate that networks have Small World properties (geodesic distance growths logarithmically with the size of the network).
Metrics of the dual graph
Clustering coefficient

• To compare clustering in networks, the easiest is to calculate the clustering of the network relatively to the clustering in a random network of the same size.

• The clustering in a random network is equal to the ratio of the average degree of routes in the network to the number of routes.

\[
\text{relative clustering} = \frac{\text{clustering coeff}}{\text{clustering coeff of a random graph}} = \frac{\text{clustering coeff}}{\frac{\text{average degree}}{\text{nb of routes}}}
\]
Metrics of the dual graph
Relative clustering in Tshwane

<table>
<thead>
<tr>
<th></th>
<th>Brooklyn</th>
<th>Irene</th>
<th>Silver Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>0.92</td>
<td>1.53</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Networks become more and more clustered in Tshwane.
Metrics of the dual graph
Relative clustering in Tshwane

San Francisco 0.28
Barcelona 0.92
Silver Lakes 2.38

An increase of clustering from below 1 to 2 or 3 is typical for a move towards suburban urban forms.
Metrics of the dual graph

Betweenness centrality

• Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path between two other nodes. It was introduced as a measure for quantifying the control of a human on the communication between other humans in a social network.

• High betweenness centrality allows strong access control.

• Again, two parameters are of interest:
 – Maximum betweenness centrality: the maximal number of paths passing by a node.
 – Average betweenness centrality, which provides a more global insight on the network.
Metrics of the dual graph
Maximum betweenness centrality in Tshwane

- Brooklyn: 49
- Irene: 259
- Silver Lakes: 637

The maximum betweenness centrality increases dramatically!

This reveals the collapse of the number of entry points in the communities, which makes control easier.
Metrics of the dual graph
Average betweenness centrality in Tshwane

Brooklyn Irene Silver Lakes

16 29 37

Same holds for the average betweenness centrality...
Wrap up

Maximum betweenness centrality

Relative clustering coefficient

Brooklyn

Irene

Silver Lakes
Relevance of Analysis
Implications for planning and policy

• Stories told through urban morphology
 – White Urbanisation
 • From innercity to suburbs
 – “Black” Urbanisation (less understood)
 • Township (formal and informally planned)
 • Informal African Compound and social networks?

• Multi-scale Mapping of Boundaries and Barriers
The Urban Form the manifestation of a collection of “stories” of different people and groups
Taxonomy of Separation

Connector Road Paradox
• Separates rather than connects
• Becomes barrier
• Smaller collectors are more connective
Separation between
Separation/Isolation within
Policy recommendations and future research

• More research needed on the different “stories” form the urban fabric of Tshwane (South Africa)
• Link between urban form and social network important (Policy perspective)
• Research on Boundaries and Barriers is needed through mapping and understanding underlining rationale (Apartheid vs. Present Day Topological Separation)
• Using theory and application to inform urban management and planning strategies and policies (eg. Impacts of the eradication of informal areas)
Only when we understand the underlying factors influencing urban morphology/fragmentation can we put our city back together not just physically but also socially.
Thank you for your attention!